[This question paper contains 5 printed pages]

Your Roll No.

Sl. No. of Q. Paper : 7462 J

Unique Paper Code : 32351102 - OC

Name of the Course : B.Sc.(Hons.)

Mathematics

Name of the Paper : Algebra

Semester : I

Time: 3 Hours Maximum Marks: 75

Instructions for Candidates:

- (i) Write your Roll No. on the top immediately on receipt of this question paper.
- (ii) Attempt any two parts from each questions.
- (iii) All questions are compulsory.
- 1. (a) Find the polar representation for the complex number 6

$$z = 1 - \cos a + i \sin a$$
, $a \in [0, 2\pi)$

- (b) Solve the equation $(2 3i)z^6 + 1 + 5i = 0$.
- (c) Compute $z^{n} + \frac{1}{z^{n}}$, if $z + \frac{1}{z} = \sqrt{3}$.

P.T.O.

6

- 2. (a) Define ~ on Z by a~b if and only if 2a + 3b = 5n for some integer n. Prove that ~ defines an equivalence relation on Z.
 - (b) Define $f: \mathbb{Z} \to \mathbb{Z}$ by $f(x) = 3x^3 x$.
 - (i) Is fone-to-one?
 - (ii) Is f onto?

Justify each answer.

6

- (c) Show that the open intervals (0, 1) and (1, 2) have the same cardinality.
- (a) Define relatively prime integers. Show that 17,369 and 5,472 are relatively prime. Hence, find integers x and y such that 17369x + 5472y = 1.
 - (b) (i) Show that 30 = 1 (mod7) and hence evaluate 360 (mod7).
 - (ii) Find all integers $x \pmod{12}$ that satisfy $9x \equiv 3 \pmod{12}$.
 - (c) Use the Principle of Mathematical Induction to prove $2^{2n}-1$ is divisible by 3, $\forall n \geq 1$.
- 4. (a) Write the solution set of the given system of equations in parametric vector form. 6.5

$$x_1 + 3x_2 + x_3 = 1$$

$$-4x_1 - 9x_2 + 2x_3 = -1$$

$$-3x_2 - 6x_3 = -3$$

(b) Let
$$A = \begin{pmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{pmatrix}$$
. Show that the

equation Ax = b may not be consistent for

every
$$b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
. Also describe the set of all

vectors b for which Ax = b is consistent.

6.5

(c) Determine h and k such that the solution set of the given system 6.5

$$\mathbf{x}_1 + 3\mathbf{x}_2 = \mathbf{k}$$

$$x_1 + 3x_2 = k$$

$$4x_1 + h x_2 = k$$
(i) is empty.

- (ii) contains a unique solution.
- (iii) contains infinitely many solutions.
- (a) Boron sulphide reacts violently with water 5. to form boric acid and hydrogen sulphide gas. The unbalanced equation is $B_2S_3 + H_2O \rightarrow$ $H_3BO_3 + H_2S$.

Balance the chemical equation using the vector equation approach. 6.5 (b) Find the value of h for which the following vectors are linearly dependent. Also find a linear dependence relation among them. 6.5

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, v_3 = \begin{bmatrix} 2 \\ 1 \\ h \end{bmatrix}$$

- (c) A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ first performs a vertical shear that maps e_1 into $e_2 - 2e_1$, leaves the vector e, unchanged and then reflects point through the line $x_2 = x_1$
 - (i) Find Matrix A such that T(x) = Ax,

(ii) Find Matrix A such that
$$T(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
.

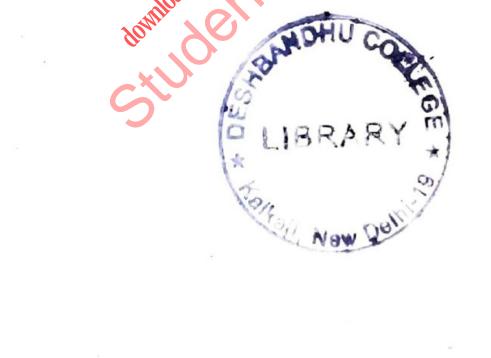
(ii) Find x such that $T(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

6.5

Given:
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ -5 & -1 & 9 \end{bmatrix}$$

- (i) Show that the matrix A is row equivalent to I₃.
- (ii) Find inverse of A and hence find inverse of AT. 6.5


(b) Find a basis for column space for the matrix A 6.5

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{bmatrix}$$

(c) Is $\lambda = 4$ an eigen value of the matrix A?

$$A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$$

If so, find eigen space of A corresponding to eigen value $\lambda = 4 \text{ MeV}$ 6.5

